comparisons to be made of detectability. For example, we assume that the X-ray data go out to the copper limit $(s_0 = 8 \cdot 2 \ \text{Å}^{-1})$ and that the electron diffraction data go out to a typical value of 10 Å⁻¹. We assume that the W temperature factor is $0.5 \ \text{Å}^2$, the C 1 Å², and the H 3 Å². Then we obtain for the ratios of peak heights*

three-dimensions	X-rays	H:C:W	=	1	:	20	:	~ 480
	electrons		=	1	:	7	:	58
two-dimensions	X-rays		=	1	:	14	:	340
	electrons		=	1	:	6	:	43

* Our calculations on H, C, and W have verified that Vainshtein's (1956) semi-empirical method of computing central quantities such as peak heights and curvatures is reliable to within 25%.

From these ratios we conclude that the advantage of using electrons rather than X-rays for the detection of light atoms in the presence of heavy atoms is striking. These ratios of peak heights seem more in keeping with experience than do the ratios of peak volumes.

References

- HARKER, D. & KASPER, J. S. (1948). Acta Cryst. 1, 70. IBERS, J. A. (1958). Acta Cryst. 11, 178.
- IBERS, J. A. (1961). Acta Cryst. 14, 538.
- VAINSHTEIN, B. K. (1956). Strukturnaya Elektronografiya (in Russian), (Academy of Sciences of the U.S. S.R.), particularly Chapter IV.

Acta Cryst. (1961). 14, 541

The crystal structure of the lanthanide oxyiodides, SmOI, TmOI and YbOI.* By F. H. KRUSE, L. B. ASPREY and BRUNO MOROSIN,[†] Los Alamos Scientific Laboratory, University of California, Los Alomos. New Mexico, U.S.A.

(Received 30 September 1960)

In a program of investigation of unusual valence states of lanthanide compounds, TmOI was obtained during preparation of TmI_2 (Asprey & Kruse, 1960). Pure samples of anhydrous SmOI, TmOI, and YbOI have been prepared for purposes of identification. Subsequently, analysis of their crystal structures was carried out.

The oxyiodides are prepared by evaporation of the triiodide solution and heating the residue as described by Asprey & Kruse (1960). In a slightly different preparation, a solution of lanthanide triiodide was saturated with NH₄I and evaporated to dryness. The resultant residue was dried and annealed under vacuum in a quartz capillary at 550 °C. over night to remove NH₄I and residual lanthanide triiodide. The X-ray powder shots were made using a standard 114.5 mm. Norelco camera and Cu K α radiation.

These lanthanide oxyiodides crystallize in the tetragonal PbFCl structure type, as do a number of other lanthanide and actinide oxyhalides (Wyckoff, 1960). The unit cell dimensions for the three oxyiodides are given in Table 1.

Table 1.	Unit-cell dimensions of lanthanide oxyiodides	
	Structure type: PbFCl	

Tetragonal space group, $P4/nmm-D_{4h}^7$								
	a_{i}	0	c_0					
SmOI	4.008 ± 0	0∙005 Å	9.192 ± 0.003	8 Å				
TmOI	3.887 ± 0	0.001	9.166 ± 0.002	2				
$\mathbf{Y}\mathbf{b}\mathbf{O}\mathbf{I}$	3.870 ± 0	0.006	9.161 ± 0.003	8				
Previou	sly reported BiOI LaOI PuOI	oxyiodides 3·985 Å 4·144 4·042	9 (Wyckoff, 19 9 129 Å 9 126 9 169	60)				

The sample of TmOI was of more immediate concern

* Work performed under the auspices of the U.S. Atomic Energy Commission.

† Present address: Hughes Research Laboratories, Hughes Aircraft Co., Culver City, California. and gave the best powder patterns, consequently parameter values were determined to compare calculated with observed intensities. The final parameters obtained for TmOI are given in Table 2 along with parameters reported for LaOI, PuOI and BiOI. Table 3 presents the pertinent interatomic distances for TmOI. The distances all fall within ranges anticipated for these ions except for the relatively short I–I distance of 3.89 Å. However, the other isostructural oxyhalides show this same shortening of the halogen-halogen distances between adjacent halogen layers.

Table 2. Atomic position parameters for TmOI and previously reported MOI structures

Space group positi	ions:	${f O}(a): {f I}(c): {f M}(c):$	$\begin{array}{c}0, \ 0, \ 0; \ \frac{1}{2}, \ \frac{1}{2}, \ 0\\0, \ \frac{1}{2}, \ u; \ \frac{1}{2}, \ 0, \ \tilde{u}\\0, \ \frac{1}{2}, \ u; \ \frac{1}{2}, \ 0, \ \tilde{u}\end{array}$
TmOI: LaOI: PuOI: BiOI:	$U_I = U_I = U_I = U_I = U_I =$	0.680 0.660 0.67 0.668	$\begin{array}{l} U_{Tm} = 0.125 \\ U_{La} = 0.135 \\ U_{Pu} = 0.13 \\ U_{Bi} = 0.132 \end{array}$

Table 3. Interatomic distances in TmOI

	(In Å, all g	<u>+</u> 0·02)		
Гm–Tm	$3.58; \ 3.89$	I–I	3.89; 4.29	
Гm–I	3.28	I-O	3.52	
Гm–O	2.26	0-0	2.75; 3.89	

A tabulation of the partial powder X-ray diffraction patterns of SmOI, TmOI, and YbOI is given in Table 4. The relative peak intensities are essentially the same for all three samples. The I_o has been corrected for absorption by a cylindrical powder specimen with $\mu r = 20.0$. An isothermal overall temperature factor correction with $\beta = 2.0$ was included in the I_c .

References

- ASPREY, L. B. & KRUSE, F. H. (1960). J. Inorg. Nucl. Chem. 13, 32.
- WYCKOFF, R. W. G. (1960). Crystal Structures, Vol. I, Chapter IV, pp. 29, 47. New York: Interscience Publishers.

Table 4.	Partial powder	X-ray	diffraction	patterns	of TmOI.	SmOI.	and YbOI

		TmOI			Sm	SmOI		100
hkl		I _o †	d_c	d_o	$\overline{d_c}$	do	$\overline{d_c}$	
001	15	17	9·166 Å	9·149 Å	9·192 Å	9·180 Å	·	0
002	2	2	4.583	4.583	4.596	4.545		
101	<1	2	3.579	3.602	3.674			
003	< 1		3.005		3.064			
102	100	100	2.964	2.946	3.021	3.006	$2 \cdot 956$ Å	2∙963 Å
110	១មុ	54	2.748	2.732	2.834	2.823	2.737	2.737
103	3 94	2 96	2.033	2.614	2.708	2.575	2.622	2.625
112	10	20 6	2.402	2.387	2.434	2.421	2.397	2.409
004	11	5	2.307	2.340	2.412	2.418	2.349	
113	< 1	_	2.043	2.202	2.298	2.294	2.290	$2 \cdot 250$
104	ii	6	1.974	1.964	1.004	2.001	2.038	
200	34	38	1.943	1.936	2.004	2.056	1.025	1.028
201	5	6	1.901	1.894	1.958	2 000	1.803	1.936
005	8	7	1.833	1.828	1.838	1.838	1.839	1.854
202	3	_	1.789		1.837		1.782	1054
114	25	20	1.760	1.754	1.785	1.781	1.756	1.764
211	< 1		1.708	_	1.759		1.701	1.01
105	2		1.658	—	1.671		1.656	
203	<1		1.640		1.677		1.634	
212	66	66	1.625	1.621	1.670	1.667	1.619	1.622
006	2		1.528		1.532		1.527	1.529
115	22	24	1.525	1.522	1.542	1.541	1.522	1.529
213	19	19	1.511	1.508	1.547	1.549	1.506	1.510
204	11	9	1.482	1.479	1.510	1.507	1.478	1.485
914	10	5 7	1.995	1.419	1.431	1.427	1.420	
214	14	92	1.380	1.385	1.413	1.416	1.381	1.372
221	2	23 4	1.350	1.372	1.417 J		1·368 j	
116	3		1.335	1.380	1.949		1.353	
205	15	14	1.334	1.332	1.355	1.252	1.333	1 990
222	2		1.316	1 002	1.354	1.999	1.330	1.338
007	2		1.309		1.313		1.200	
301	< 1		1.283	_	1.322		1.977	
215	1	_	1.261	_	1.283		1.258	
223	<1		1.253		1.286		1.249	
302	17	18	1.247	1.246	1.283	1.284	1.242)	
107	13	13	1.241	1.239	1.248	1.246	$1 \cdot 240$	1.246
310	18	17	1.229	1.229	1.267	1.268	1.224	1.227
311	3	2	1.218	1.225	1.256		1.213	_
200	3		1.201		1.217	·	1.199	1.198
303 219	Э 4	8	1.193	1.207	1.225	1.224	1.188	
117	4		1.187		1.222	-	1.182	
224	7	7	1.178	1.177	1.191	1.000	1.181	_
216	4	2	1.147	1.146	1.165	1.206	1.175	_
008	< 1		1.145	1.140	1.100	1.105	1.145	_
313	< 1		1.140		1.490	-	1.145	
304	2	2	1.128	1.127	1.155	1.156	1.136	
225	8	10	1.100	1.099	1.122	1.198	1.006	
108	<1		1.099		1.104	1.125	1.009	
207	3	—	1.086		1.098	1.081	1.098	
314	13	14	1.083	1.083	1.110	1.111	1.079	1.083
321	<1		1.071		1.104		1.066	
305	<1		1.058		1.081	(322)	1.055	
118	1		1.057		1.065	(1.056	
322	21	22	1.049	1.049	1.080	1.081	1.045	
217	18	26	1.046	1.046	1.059	1.059	1.044	1.048
226	2		1.022	_	1.040	(323)	1.019	
315	14	18	1.021	1.021	1.043	(323)	1.018	1.019
009	2		1.018		1.021		1.018	_ 010
323	7	10	1.017	1.017	1.045	1.044	1.013	_
306	2	-	0.988	—	1.007		0.985	

* Calculated intensities normalized to yield strongest I=100.
† Relative peak intensities above background from densitometer measurements. Very, very weak observed lines have been given a relative value of 2 on this scale.

•